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1 Introduction

Macroeconomic announcement days play a central role in the compensation for risks on

financial markets. During the period of 1961-2014, about 55% of the market equity premium

is realized on about 30 days per year with significant macroeconomic announcements. In

the cross-section, the expected return-β relationship predicted by the Capital Asset Pricing

Model (CAPM) is strong and significant on macroeconomic announcement days. In addition,

bond risk premium is also significant on announcement days and monotonically increasing

with respect to maturity.

In this paper, we present a quantitative model to account for the macroeconomic

announcement premium. Our model builds on the previous work of Ai and Bansal

(forthcoming) who demonstrate that, in endowment economies, generalized risk sensitivity

is necessary and sufficient for macroeconomic announcement premium. Intertemporal

preferences can in general be represented by the recursive relationship

Vt = u (Ct) + βI [Vt+1] ,

where u is the Von Neumann–Morgenstern utility and I is the certainty equivalent functional.

Ai and Bansal (forthcoming) show that the macro announcement premium cannot be

compensation for risk aversion as captured by the concavity in u (·) in expected utility models

and must be compensation for generalized risk sensitivity, which comes from the non-linearity

of I.

In this paper, we extend the Ai and Bansal (forthcoming) result to production

economies and develop an asset pricing model where the representative agent has a recursive

preference that satisfies generalized risk sensitivity and periodically receives macroeconomic

announcement that carry news about future economic growth. Positive news about future

raises the equity market valuation. At the same time, generalized risk sensitivity implies that

the marginal utility of the representative agent decreases with news about future continuation

utility. The negative comovement of marginal utility and equity market valuation upon

announcements result in a significant equity premium associated on announcement days.

The significant generalized risk sensitivity in preferences in our model implies that the

market price of risk is substantially higher on announcement days than non-announcement

days and provides a natural explanation for the success of the expected return-β relationship

on announcement days. The slope of the security market line, that is, the slope of expected

return with respect to β is the market equity premium. Because the market equity premium
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is much higher on announcement days, CAPM regressions produce a significant expected

return-β relationship on announcement days. On the other hand, because the market equity

premium is close to zero on non-announcement days, the expected return-β relationship is

insignificant on non-announcement days.

Incorporating inflation riks as in Piazzesi and Schneider (2006) and Bansal and

Shaliastovich (2013), our model can also produce a significant bond announcement premium

and an upward sloping term structure of bond announcement premium. In our model,

inflation is negatively correlated with future consumption growth. Positive news about future

raises the real value of nominal bonds and triggers negative comovement between bond

returns and marginal utilities, resulting in a significant bond premium on announcement

days. This effect is stronger for long-duration bonds and produces an upward sloping bond

announcement premium, consistent with empirical evidence.

As shown in Ai and Bansal (forthcoming), in endowment economies where consumption

cannot respond instantaneously to news, the existence of announcement premium implies

that marginal utility must respond to changes in continuation utility and identifies generalized

risk sensitivity in preferences. In production economies, the response of consumption and

continuation utility may both affect the SDF and contribute to an announcement premium.

However, we show that the endogenous response of consumption to announcements always

results in a negative announcement premium and therefore, the significant announcement

premium in the data must be due to the response of continuation utility to announcement

through generalized risk sensitivity.

In production economies, contemporaneous consumption may respond positively or

negatively to good news about future depending on whether the substitution effect or income

effect dominates. If the substitution effect dominates, the agent value future consumption

more and optimally choose to cut current consumption. Because equity is the claim to future

consumption goods, when substitution effect dominates, equity value increases upon positive

news about future. At the same time, the reduction of contemporaneous consumtion raises

marginal utility. This negative comovement between marginal utility and equity valuation

results in a negative announcement premium. Similarly, when income effect dominates, the

negative comovement between consumption and equity market valuation also result in a

negative announcement premium. In summary, even if one is willing to assume a high degree

of risk aversion, the endogenous response of consumption to announcements cannot explain

the macroeconomic announcement premium without generalized risk sensitivity.
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Related literature A growing body of literature documents the significance of the

macroeconomic announcement premium. Savor and Wilson (2013) document that stock

market returns and Sharpe ratios are significantly higher on days with macroeconomic news

releases in the U.S., Brusa, Savor, and Wilson (2015) provides evidence that a similar

phenomenon is true internationally. Lucca and Moench (2015) provide evidence for the

FOMC announcement day premium a pre-FOMC announcement drift. Cieslak, Morse, and

Vissing-Jorgensen (2015) provide evidence for significant stock market return over FOMC

announcement cycles. Mueller, Tahbaz-Salehi, and Vedolin (2017) document an FOMC

announcement premium on the foreign exchange market and attribute it to compensation to

financially constrained intermediaries.

From the theoretical perspective, Ai and Bansal (forthcoming) take a revealed preference

approach and establish the equivalence between the announcement premium and generalized

risk sensitivity. Wachter and Zhu (2018) provide a recursive-preference based model where

macroeconomic announcements reveal the probability of disasters. Different from the above

literature, our production economy setup allows consumption to respond to announcements

endogenously and affect the announcement premium. We show that generalized risk

sensitivity identified in Ai and Bansal (forthcoming) continue to be the key mechanism to

account for the announcement premium.

More generally, our paper builds on literature on asset pricing with non-expected utility.

We refer the readers to Epstein and Schneider (2010) for a review of asset pricing studies with

the maxmin expected utility model; Ju and Miao (2012) for an application of the smooth

ambiguity-averse preference; Hansen and Sargent (2008) for the robust control preference;

Routledge and Zin (2010) for an asset pricing model with disappointment aversion; and

Bansal and Yaron (2004), Bansal (2007), and Hansen, Heaton, and Li (2008) for the long-

run risks model that builds on recursive preferences. Skiadas (2009) provides an excellent

textbook treatment of recursive-preferences in asset pricing theory.

The rest of the paper is organized as follows. We document some stylized facts for the

equity premium for macroeconomic announcements in Section 2. In Section 3, we present a

two period model to establish the equivalence between generalized risk sensitivity and the

announcement premium. We present a continuous-time model to quantitatively account for

the announcement premium in Section 4. In Section 5, we extend our result to production

economies where consumption and investment are allowed to respond to announcements

instantaneously. Section 6 concludes.
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2 Stylized facts

To demonstrate the significance of the macroeconomic announcement premium, we focus

on a relatively small set of pre-scheduled macroeconomic announcements that are released

at monthly or less frequently. Within this category, we select the top five announcements

ranked by investor attention by Bloomberg users. The five selected announcements constitute

roughly thirty days per year for the period of 1961-2014. We summarize our main findings

below and provide details about the data construction in Appendix A.

1. A large fraction of the market equity premium is realized on a relatively small number

of trading days with pre-scheduled macroeconomic news announcements (See also Savor

and Wilson (2013) and Lucca and Moench (2015)).

Table I shows a substantial proportion of equity premium realized on announcement

days. The cumulative stock market excess return on the thirty news announcement

days averages 3.36% per year, accounting for about 55% of the annual equity premium

(6.19%) during this period. This pattern is even more pronounced if we focus on more

recent period of 1997-2014, where all announcements are available and there are fifty

announcement days per year. In this period, the market equity premium is 7.44% per

year, and the cumulative excess return of the S&P500 index on the fifty announcement

days averages 8.24% per year. The equity premium on the rest of the trading days is

not statistically different from zero.

2. The macroeconomic announcement is significant at high frequency.

In Table III, we report the point estimates with standard errors for average hourly

excess returns around announcements. We normalize the announcement time as hour

zero. For k = −5,−4, · · · , 0,+1,+2, the announcement window k in the table is defined

as hour k − 1 to hour k. The hourly returns typically peak at the announcement, as

reflected in row 1 of the table. The mean return during the announcement hour is

economically important: 6.46 bps with a standard error of 2.71. The difference in

mean excess returns in announcement hours compared to non-announcement hours,

like in the daily returns data, is significant with a t-statistic of 2.06. In the case of

FOMC announcements, consistent with Lucca and Moench (2015), the mean returns

prior to the announcement window are statistically significant (see row 2 of Table III);

this pre-announcement drift is not reflected in other macroeconomic announcements,

as shown in row 3 of Table III.

3. The term structure of bond announcement premium is upward sloping.
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In Figure 1, we plot the average excess return of U.S. government bond with different

maturities on announcement days. We normalize bond returns by the risk-free

rate on announcement days, as measured by the announcement-day return of 30-

day T bills. Consistent with the result reported in Savor and Wilson (2013), the

announcement premium increases with maturity, with the 30-year Treasury bond

requiring an announcement premium of roughly 4.3 bps on average on announcement

days.

Figure 1. Announcement Premiums for Nominal Bonds
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Figure 1 plots the average announcement-day return for nominal government bond with different maturities.

The horizontal axis is the bond maturity and the vertical axis is the average announcement-day excess return

of bond with different maturities.

4. The significance of the macro announcement premium is robust both intraday and

overnight.

Some announcements are pre-scheduled during financial market trading hours (e.g.,

FOMC announcement) and others are pre-scheduled prior to the opening of financial

markets (e.g., non-farm payrolls). We define intraday return (or open-to-close return)

as the stock market return from the open to the close of a trading day and overnight

return (or close-to-open return) as the return from the close of a trading day to the

open of the next trading day. We compute intraday and overnight returns for periods

with and without prescheduled announcements and report our findings in Table II.

The average overnight return during the 1997-2014 period averages about 3.52 basis
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points per day, and the average intraday return is close to zero1. Remarkably, both

intraday and overnight return on pre-scheduled announcements days are large and

small on non-announcements days. The average intraday return with announcement

is 17.0 basis points, and the average overnight return with announcement is 9.32 basis

points, while the average intraday and overnight return on non-announcement are not

statistically different from zero. This new evidence reinforces the view that most of the

equity premium realizes during periods of macroeconomic announcements.

5. The slope of the security market line, that is, the relationship between expected

returns and β is positive and significant on announcement and is virtually flat on

non-announcement days (see also Savor and Wilson (2014)).

In Figure 2, we plot the average return of the β-sorted portfolio on announcement

days (circles) and that on non-announcement days (stars). There is a clear positive

relationship between β and average returns on announcement days. On non-

announcement days, however, the slope of the security market line is essentially flat.

Figure 2. CAPM on Both Types of Days
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Figure 2 plots the security market line on announcement days (diamonds) and that on non-announcement

days (squares). The horizonal axis is the average β for β-sorted portfolios, and the vertical axis is the daily

average excess return measured in basis points.

1The previous literature (for example, Kelly and Clark (2011) and Polk, Lou, and Skouras (2016))
documents that the overnight market return is on average higher than the intraday return in the United
States. This is consistent with our average intraday and overnight empirical findings.
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In the next sections, we present a theory of announcement premium to quantitatively

explain the above stylized facts about the announcement premium.

3 A two-period model

In this section, we use a two-period setup to illustrate the concept of generalized risk

sensitivity of preferences, which provides a necessary and sufficient condition for the existence

of the announcement premium.

3.1 Asset market for announcements

We consider a representative-agent economy with two periods, 0 and 1. Period 0 has no

uncertainty and the aggregate endowment is a known constant, C̄0. The aggregate endowment

in period 1, denoted by C̄1, is a random variable. We assume a finite number of states:

s = 1, 2, · · ·N and denote the possible realizations of C̄1 as
{
C̄1 (s)

}
s=1,2,···N . For simplicity,

we assume that all states occur with equal probability: π (s) = 1
N

for s = 1, 2, · · · , N .

Agents in the economy start with an initial level of wealth W0 and trade a vector of assets

j = 1, 2, · · · , J on sequential markets. Asset j is a claim to a payoff {Xj (s)}Ns=1 in period 1.

In our economy, period 0 is further divided into two subperiods. In period 0−, agents do not

know any information about state s, and the price of asset j is denoted P−j . In period 0+,

an announcement arrives. For simplicity, we assume that the announcement fully reveals the

true state s. The price of asset j at this point is denoted P+
j (s). Because the announcement

resolves all uncertainty, all J assets must have the same risk-free return from period 0+ to

period 1, which we denote as R1 (s).

An agent’s utility maximization problem in period 0+ can be written as

V +
(
W+ (s)

)
= max {u (C0 (s)) + βu (C1 (s))}

s.t. : C0 (s) +
1

R1 (s)
C1 (s) = W+ (s) ,

where V + (W+ (s)) is the value function at 0+ and W+ (s) denotes the agent’s wealth in

period 0+ after announcement s.

In period 0−, before any information about the state s is revealed, the pre-announcement

market opens and asset prices at this point are called pre-announcement prices and are
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denoted by
{
P−j
}
j=1,2,··· ,J . The period 0− budget constraint of the agent can be written as:

W+ (s) = W0 −
J∑
j=1

ξjP
−
j +

J∑
j=1

ξjP
+
j (s) . (1)

The interpretation is that the agent starts with initial level of wealth W0. She choose the

holdings of J assets, denoted ξj. P
−
j is the pre-announcement price and P+

j .

We assume that in period 0−, the agent aggregates the uncertainty using a certainty

equivalence functional I. The utility maximization problem in period 0− can be written as:

max
{ξj}Jj=1

I
[
V +
(
W+ (s)

)]
.

To close the model, we note that market clearing implies that C0 (s) = C̄0, and C1 (s) = C̄1 (s)

for all s. It is worth noting that from individual investor’s point of view, C0 is chosen after the

announcement is made, and therefore can depend on s. In equilibrium, however, the resource

constraint requires that C0 (s) = C̄0 does not depend on s. In Figure 3, we illustrate the

timing of information and consumption (top panel) and that of asset prices (bottom panel),

assuming N = 2.

The announcement return of an asset, denoted by RA (s), is defined as the return of a

strategy that buys the asset before the pre-scheduled announcement and sells immediately

afterwards (assuming no dividend payment at 0+):

RA (s) =
P+ (s)

P−
. (2)

Our choice of numeraire in period 0− should be interpreted as one unit of state-non-contingent

consumption deliverd in period 0+ (see equation (1)). Due to this choice of consumption

numeraire, the risk-free announcement return must be one by no arbitrage. We say that an

asset requires a positive announcement premium if E [RA (s)] > 1.

We focus on announcement payoffs that are co-monotone with C̄1 (s). Asset j is said to

have an announcement payoff comotone with respect to C̄1 (s) if ∀s and s′, C̄1 (s) ≥ C̄1 (s′)

if and only if P+
j (s) ≥ P+

j (s′). We also impose some regularity conditions on the pair

{u, I}, which characterizes the agent’s preference. We assume that both u and I are

continuously differentiable. In addition, we assume that I is invariant to distribution, that

is, I [X] = I [X ′] if X ′ is a permutation of X.2 We say that {u, I} represents expected utility

2This is due to the assumption of equal probability for each state.

8



Figure 3. Consumption and Asset Prices in the Two-period Model

if I is the expectation operator, i.e. I [X] = E [X]. We also define the concept of generalized

risk sensitivity as in Ai and Bansal (2018).

Definition 1. Generalized risk sensivity

The certainty equivalent functional I is said to satisfy generalized risk sensitivity if

I [X] ≥ I [X ′] (3)

whenever X second stochastic dominates X ′. It is said to satisfy strict generalized risk

sensitivity if the strict inequality in (3) holds whenever X strictly second stochastic dominates

X ′.

The following theorem provides a necessary and sufficient condition for the announcement

return to be positive.

Theorem 1. (Announcement Premium)

1. Expected utility is equivalent to the announcement premium being zero for all

announcement payoffs.

2. Generalized risk sensivity is equivalent to the announcement premium being non-

negative for all announcement payoffs that are co-monotone with C̄1.
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3. Strictly generalized risk sensivity is equivalent to the announcement premium being

positive for all announcement payoffs that are strictly co-monotone with C̄1.

The above theorem simplifies and extends Theorem 2 in Ai and Bansal (2018). The

assumption of finite state space greatly simplies our ananlysis. In addition, it allows us

to prove 3), which is not available in Ai and Bansal (2018). Having provided a general

characterization for announcement premium, we now turn to some concrete examples of risk

preferences.

3.2 Simple examples

Expected utility We first consider the case in which the representative agent has

expected utility:3 E [u (C0 (s)) + βu (C1 (s))], where u is strictly increasing and continuously

differentiable.4 The period 0− price of one unit of period 1 consumption goods, which is

measured in units of period 0+ state-non-contingent consumption goods, can be computed

from the ratio of marginal utilities: π (s) βu′(C1(s))
u′(C0)

.5 Therefore, the pre-announcement price

of an asset with payoff {X (s)}Ns=1 is given by:

P− = E

[
βu′ (C1 (s))

u′ (C0)
X (s)

]
. (4)

In period 0+, because s fully reveals the true state, the agent’s preference is represented by

u (C0 (s)) + βu (C1 (s)) . (5)

As a result, for any s, the post-announcement price of the asset is

P+ (s) =
βu′ (C1 (s))

u′ (C0)
X (s) . (6)

3We use the term “expected utility” to mean utility functions that are additively separable with respect
to both time and states.

4Because the decision for C0 is made at 0+ after the announcement is made, from the agent’s point of
view, C0 (s) is allowed to depend on s.

5From the agent’s perspective, the marginal utility of one unit of period 0+ state non-contingent
consumption is E [u′ (C0 (s))]. In equilibrium, the market clearing condition implies that C0 (s) cannot
depend on s. Therefore, the expectation sign is not necessary: E [u′ (C0 (s))] = u′ (C0). In the rest of
this section, we will use the notation C0 (s) when describing preference to emphasize that individual agent’s
consumption choice is allowed to depend on s. In the expressions of stochastic discount factors, we will
impose market clearing and write C0.
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Clearly, the expected announcement return is E [RA (s)] =
E[P+(s)]

P−
= 1. There can be no

announcement premium on any asset under expected utility.

Recursive utility We discuss an example of recursive utility of Kreps and Porteus

(1978) and Epstein and Zin (1989) with constant elasticity of substitution (CES). Because

all uncertainties are fully resolved after the announcement, in period 0+, the agent first

aggregates utility across time to compute continuation utility given announcement s:

1

1− 1
ψ

C
1− 1

ψ

0 (s) + β
1

1− 1
ψ

C
1− 1

ψ

1 (s) ,

where ψ is the intertemporal elasticity of substitution parameter. Before the announcement,

in period 0−, the agent computes the certainty equivalent of the continuation utility:

{
E

[{
C

1− 1
ψ

0 (s) + βC
1− 1

ψ

1 (s)

} 1−γ
1−1/ψ

]} 1
1−γ

. (7)

Again, the period 0− Arrow-Debreu price of one unit of period 1 consumption goods can

be computed from the ratio of marginal utilities: m∗ (s) β
[
C1(s)
C0

]− 1
ψ

, where

m∗ (s) =

{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

E

[{
C

1− 1
ψ

0 + βC
1− 1

ψ

1 (s)

} 1/ψ−γ
1−1/ψ

] . (8)

can be interpreted as A-SDF as in the case of the robust control preference. Clearly, m∗ is

a decreasing function of continuation utility if and only if γ > 1
ψ

, which coincides with the

condition for preference for early resolution of uncertainty for this class of preferences.6

6Note that the announcement leads uncertainty about C1 to resolve before its realization, which
corresponds to the case of early resolution of uncertainty in Kreps and Porteus (1978).
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4 A Quantitative model of announcement premiums

4.1 Physical setup of the model

In this section, we present a continuous-time representative agent model to quantitatively

account for the announcement premium. We assume that the consumption of the

representative agent, Ct, follows

dCt
Ct

= xtdt+ σdBC,t, (9)

where xt is a continuous-time AR(1) process (an Ornstein-Uhlenbeck process) unobservable

to the agent in the economy. The law of motion of xt is

dxt = ax (x̄− xt) dt+ σxdBx,t. (10)

The standard Brownian motions Bt and Bx,t in equations (9) and (10), respectively, are

independent.

At time 0, the agent’s prior belief about x0 can be represented by a normal distribution

with mean m0 and variance ζ0. Although xt is not directly obeservable, the agent can

use two sources of information to update beliefs about xt. First, the realized consumption

path contains information about xt, and second, at pre-scheduled discrete time points

T, 2T, 3T, · · · , additional signals about xt are revealed through announcements. For n =

1, 2, 3, · · · , we denote sn as the signal observed at time nT and assume sn = xnT + εn, where

εn is i.i.d. over time, and normally distributed with mean zero and variance σ2
S.

Given the information structure, the posterior distribution of xt is Gaussian and can be

summarized by its first two moments. We define x̂t = Et [xt] as the posterior mean and

ζt = Et
[
(xt − x̂t)2] as the posterior variance, respectively, of xt given information up to time

t. For n = 1, 2, · · · , at time t = nT , the agent updates his beliefs using Bayes’ rule:

x̂+
nT =

1

q+
nT

[
1

σ2
S

sn +
1

ζ−nT
x̂−nT

]
;

1

ζ+
nT

=
1

σ2
S

+
1

ζ−nT
, (11)

where x̂+
nT and ζ+

nT are the posterior mean and variance after announcements, and x̂−nT and

ζ−nT are the posterior mean and variance before announcements, respectively. A special case is

that the annoucements can compeletly reveal the information about xt, which means, σ2
S = 0.

In the interior of (nT, (n+ 1)T ), the agent updates his beliefs based on the observed
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consumption process using the Kalman-Bucy filter:

dx̂t = ax [x̄− x̂t] dt+
ζ (t)

σ
dB̃C,t, (12)

where the innovation process, B̃C,t is defined by dB̃C,t = 1
σ

[
dCt
Ct
− x̂tdt

]
. The posterior

variance, ζ (t) satisfies the Riccati equation:

dζ (t) =

[
σ2
x − 2axζ (t)− 1

σ2
ζ2 (t)

]
dt. (13)

We assume that the stock market is the claim to the following dividend process:

dDt

Dt

= [x̄+ φ (xt − x̄)] dt+ φσdB̃C,t + νdBD,t, (14)

where we allow the leverage parameter φ > 1 so that dividends are more risky than

consumption, as in Bansal and Yaron (2004). In addition, the shock dBD,t is independent of

dBC,t and dBx,t.

4.2 Preferences and the SDF

We assume that the representative agent is endowed with a Kreps-Porteus preference with risk

aversion γ and intertemporal elasticity of substitution ψ. In continuous time, the preference is

represented by a stochastic differential utility, which can be specified by a pair of aggregators

(f,A) such that in the interior of (nT, (n+ 1)T ),

dVt = [−f(Ct, Vt)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt (15)

We adopt the convenient normalization A(v) = 0 (Duffie and Epstein (1992)), and denote f̄

the normalized aggregator. Under this normalization, f̄(C, V ) is:

f̄(C, V ) =
β

1− 1/ψ

C1−1/ψ − ((1− γ)V )
1−1/ψ
1−γ

((1− γ)V )
1−1/ψ
1−γ −1

. (16)

The case of ψ = 1 is obtained as the limit of (16) with ψ → 1:

f̄(C, V ) = βV [(1− γ) lnC − ln [(1− γ)V ]] .
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Because announcements typically result in discrete jumps in the posterior belief about xt,

the value function is typically not continuous at announcements. Given our normalization of

the utility function, for t = nT , the pre-announcement utility and post-announcement utility

are related by:

V −t = E−t
[
V +
t

]
,

where E−t represents expectation with respect to the pre-announcement information at time

t. In what follows, we assume γ > 1
ψ

so that the above preference satisfies generalized risk

sensitivty in Ai and Bansal (2018).

In the above setup, we can show that the value function of the representative agent takes

the form

V (x̂, t, Ct) =
1

1− γ
H (x̂, t)C1−γ

t ,

for some twice continuously differentiable function H (x̂, t). The HJB equation and the

corresponding boundary conditions for H (x̂, t) can be found in Appendix section 3. Given

the utility of the representative agent, the state price density, denoted {πt}∞t=0 can be

characterized by the following theorem.

Theorem 2. (State price density)

For n = 1, 2, 3 · · · , in the interior of ((n− 1)T, nT ), πt is a continuous diffusion process

with the law of motion
dπt
πt

= −r (x̂, t) dt− σπ (x̂, t) dB̃t,

where r (x̂, t) is the instantaneous risk-free interest rate and σπ (x̂, t) is the market price of

risk. At announcements, t = nT , πt is discountinuous, and the A-SDF is given by

m∗t =
π+
t

π−t
=

H
(
x̂+
t , t

+
) 1
ψ
−γ

1−γ

E−t
[
H
(
x̂+
t , t

+
)] 1

ψ
−γ

1−γ

.

Give the state prices density, we can compute the present value of the dividend stream.

Denote p (x̂, t) as the price-to-dividend ratio, we have:

p (x̂t, t)Dt = Et

[∫ ∞
t

πs
πt
Dsds

]
.

We provide the ODE and the corresponding boundary conditions that determines p (x̂, t) in

Appendix C.
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In general, let j be an index of an asset with payout rate Dj
t , where we assume that

dDj
t

Dj
t

= µjtdt+ σjtdB̃C,t + νjtdB
j
t ,

where dBj
t is a Brownian motion independent of BC,t and Bx,t. Let pit be the price-to-dividend

ratio of asset j. The cumulative return of the asset, Rj
t is defined as

dRj
t

Rj
t

=
d
[
pjtD

j
t

]
pjtD

j
t

+Dj
tdt.

In the interior of ((n− 1)T, nT ), Rj
t is a continuous diffusion process of the form

dRj
t

Rj
t

= µjR,tdt+ σiR,tdB̃t + νjR,tdB
j
t .

At announcements t = nT ,
Rj
t+

Rj
t−

=
pjt+

pjt−
.

We use the convention that quantities without the j superscript refers to the market equity.

We calibrate our model to standard parameters in the long-run risk literature and evaluate

quantitatively its implications on the announcement premium. The parameters are listed in

Table IV. We assume that announcements occur monthly, so that T = 1
12

.

4.3 Announcement premiums of equity

Let (t, t+ ∆) be an infinitesimally small interval in the interior of (nT, (n+ 1)T ). The equity

premium of asset j over the interval satisfies

Et

[
Rj
t+∆

Rj
t

]
− ert∆ = −ert∆Covt

[
πt+∆

πt
,
Rj
t+∆

Rj
t

]
. (17)

Because both πt and Rj
t are diffusion processes, standard results imply

Et

[
Rj
t+∆

Rj
t

]
− ert∆ ≈ σπ (t)σjR (t) ∆. (18)
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In particular, as ∆→ 0, Et

[
Rjt+∆

Rjt

]
− ert∆ → 0. In fact, using a log-linear approximation, we

show in Appendix 3, that the market equity premium over the interval (t, t+ ∆) is 7

[
γσ +

1
ψ
− γ

1− γ
γ − 1

ax + κ

ζt
σ

][
φσ +

φ− 1
ψ

ax + e−%̄
ζt
σ

]
∆, (19)

where κ and %̄ are the steady-state consumption-wealth ratio and log price-to-dividend ratio,

respectively.

Let t = nT be an announcement time.

πt+∆

π−t
=
π+
t

π−t

πt+∆

π+
t

=
H
(
x̂+
t , t

+
) 1
ψ
−γ

1−γ

E−t
[
H
(
x̂+
t , t

+
)] 1

ψ
−γ

1−γ

πt+∆

π+
t

.

As ∆ → 0, πt+∆ → π+
t , but the term

H(x̂+
t ,t

+)

1
ψ
−γ

1−γ

E−t [H(x̂+
t ,t

+)]

1
ψ
−γ

1−γ

does not vanish. Therefore, equity

premium in general does not vanish as ∆→ 0. In fact,

lim
∆→0

Et

[
Rj
t+∆

Rj
t

]
=
E−t
[
H
(
x̂+
t , t

+
)] 1

ψ
−γ

1−γ E−t
[
pjt+
]

E−t

[
H
(
x̂+
t , t

+
) 1
ψ
−γ

1−γ pjt+

] > 1

as long as the price-to-dividend ratio comoves positively with the continuation utility.

We show in Appendix A that the announcement premium on the market equity can be

approximated by

lim
∆→0

Et

[
Rt+∆

Rt

]
−1 ≈ 1

2

1
ψ
− γ

1− γ

{(
γ − 1

ax + κ

)2

−
1
ψ
− γ

1− γ

(
γ − 1

ax + κ

)2

+ 2
γ − 1

ax + κ

φ− 1
ψ

ax + e−%̄

}[
ζ−T − ζ

+
T

]
.

(20)

Intuitively, (20) implies that the magnitude of the announcement premium is proportional

to the amount of uncertainty reduction, ζ−T − ζ+
T . The more informative announcements

are, the higher the equity premium will be realized upon announcements. This observation

7In general, the equity premium depends on the state variable x̂. The log-linear approximation does not
capture this dependence. We use the log-linear approximation to illustrate the intuition of the model. All
figures and calibration results are obtained based on the global solution of the PDE obtained by the Markov
chain approximation method.
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implies that the heterogeneity in the magnitude of the premium for different macroeconomic

announcements can be potentially explained by the differences in their informativeness.

Equations (19) and (20) illustrates the difference between the equity premium realized on

announcement days and non-announcement days. On non-announcement days, the equity

premium vanished as ∆→ 0. However, announcements are associated with a discrete amount

of realization of equity premium (20) that does not vanish even as ∆ → 0. We report the

mean and standard deviation of equity return on announcement day and non-announcement

days in Table V.

Empirically, most of the FOMC announcement premium is realized in the several hours

before the announcement, as documented by Lucca and Moench (2015). As shown in Ai

and Bansal (2018), assuming that the investors in the economy receive informative signals

before announcements, the mechanism of our model is also consistent with pre-FOMC

announcement drift.

4.4 Bond announcement premiums

In this section, we show that our calibrated model is also able to account for the

announcement premium for government bonds. To model the announcement premium for

nominal bond, we follow the approach of Piazzesi and Schneider (2006) and specify the

dynamics of an inflation process. We assume that the nominal price process follows

dPt
Pt

= −φP [(xt + θt) dt+ σdBt] .

Here, φP > 0 captures the fact the inflation is negatively correlated with the long-run growth

of the economy. In addition, the expected inflation depends also on θt, where

dθt = −aθθtdt+ σθdBθ,t.

We assume that θt is not observable, but is revealed by FOMC announcements. The inclusion

of θt allows our model to jointly match the Sharpe ratio of nominal bond returns and the

persistence of inflation.

We choose φP = 0.20, aθ = 0.02 and σθ = 0.01 to jointly match the moments of inflation

dynamics estimated in Bansal and Shaliastovich (2013): a standard deviation of 1.76, an

autocorrelation of 0.56 and a covariance with consumption growth of −0.11.

In Table VI, we replicate and extend Savor and Wilson (2013)’s evidence on the
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announcement premium for nominal bond with different maturities. As we show in the table,

our model is consistent with the empirical evidence on the upward sloping announcement

premium with respect to bond maturity, and our model matches the magnitude of the

announcement premium quite well.

4.5 CAMP on announcement days

Empirically, the CAPM model holds very well on macroeconomic announcement days, where

the expected return-β relationship is basically flat on non-announcement days (Savor and

Wilson (2014)). There is a simple explanation for this phenomenon in our model. As we have

seen from expressions (19) and (20), the market price of risk is much higher on announcement

day than on non-announcement days.

Below we provide an expression for the security market line on announcement days and

that on non-announcement days in our model, respectively. The risk premium of any asset

on non-announcement days is given by (18). Let (t, t+ ∆) be a small interval in the interior

of ((n− 1)T, nT ),

Et

[
Rj
t+∆

Rj
t

]
− ert∆ ≈ σπ (t)σjR (t) ∆ = σπ (t)σR,t

σR,tσ
j
R (t)

σ2
R,t

∆.

Note that σπ (t)σR,t∆ ≈ Et

[
Rt+∆

Rt

]
− ert∆ is the market risk premium, and

σR,tσ
j
R(t)

σ2
R,t

is the

(local) CAPM β of asset j. Therefore, locally, CAPM holds, and

Et

[
Rj
t+∆

Rj
t

]
− ert∆ ≈ β

{
Et

[
Rt+∆

Rt

]
− ert∆

}
.

The slope of the security market line is the market equity premium on non-announcement

days.
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Similarly, at announcements,

E−t

[
Rj
t+

Rj
t−

]
− 1 =

(
E−t

[
Rj
t+

Rj
t−

]
− 1

)(
E−t

[
Rt+

Rj
t−

]
− 1

)
(
E−t

[
Rt+
Rt−

]
− 1
)2 ×

(
E−t

[
Rt+

Rt−

]
− 1

)

=

Cov−t

(
Rj
t+

Rj
t−
,
R+
t

R−t

)
V ar−t

(
R+
t

R−t
,
R+
t

R−t

) × (E−t [Rt+

Rt−

]
− 1

)

= β

(
E−t

[
Rt+

Rt−

]
− 1

)
.

where E−t

[
Rt+
Rt−

]
− 1 is the market announcement premium and

Cov−t

(
R
j

t+

R
j

t−
,
R+
t

R−t

)

V ar−t

(
R+
t

R−t
,
R+
t

R−t

) is the CAPM

β for asset j on announcement days.

Clearly, as ∆ → 0, the slope of the security market line vanishes on non-announcement

days, and remains strictly positive on announcement days. In Figure 4, we replicate Savor and

Wilson (2014)’s findings and plot the expected return-β relationship on announcement days

(diamonds) and that on non-announcement days (squares). We also plot in the same figure

the security market line implied in our model. Because our model matches the market equity

premium on announcement and non-announcement days fairly well, the implied security

market line is also consistent with the empirical evidence.

5 Announcement premium in production economies

In previous sections of the paper, we have considered endowment economies where

consumption does not respond to announcements instantaenously. In general, if investors

can trade off consumption and investment, then it is possible that consumption responds

to news immediately and contributes to an announcement premium. However, as we show

below, in standard RBC models, the immediate response of consumption to announcement is

quantitatively small. Moreover, it always contributes to a negative announcement premium,

regardless of whether income effect or substitution effect dominates. It is possible for the

production economy to generate a significant announcement premium, but it is due to

generalized risk sensitivity in preferences, and not the endogenous response of consumption

with respect to announcements.
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Figure 4. CAPM on Both Types of Days: Model Implications
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Figure 4 plots the security market line on announcement days (diamonds) and that on non-announcement

days (squares). The horizonal axis is the average β for β-sorted portfolios, and the vertical axis is the daily

average excess return measured in basis points. It also shows the estimated regression lines for returns against

beta on announcement days (solid line) and non-announcement days (dashed line) in our model.

5.1 The production technology

We consider a production economy where total output is produced from capital and labor

with a Cobb-Douglas production technology

Y = Kα (AN)1−α .

For simplicity, we assume inelastic labor supply and set N = 1. The labor-augmenting

productivity At follows the following law of motion:

dAt
At

= xtdt+ σdBt. (21)

We assume that xt is a continuous-time AR(1) process that follows the same law of motion

as that in equation (10). Our setup is an RBC model with persistent productivity growth,

essentially a continuous-time version of the Croce (2007) model.

We assume the same information structure as in the last section. That is, the

representative agent in the economy can use two sources of information to update beliefs

about xt. First, the realized productivity contains information about xt, and second, at pre-
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scheduled discrete time points T, 2T, 3T, · · · , additional signals about xt are revealed through

announcements. We assume that announcements perfectly reveal xt and use (x̂t, ζt) to denote

the posterior mean and variance of xt. In this environment, the social planner’s problem can

be written as:

V (A0, K0, x̂0, ζ0) = max
{Ct,It}

E

[∫ ∞
0

f̄ (Cs, Vs) dt

]
s.t. Ct +H (It, Kt) = A1−α

t Kα
t

dKt = (It − δKt) dt

dx̂t = κ (x̄− x̂t) dt+
ζ (t)

σA
dB̃t

dζ (t) =

[
σ2
θ − 2axζ (t)− 1

σ2
A

ζ2 (t)

]
dt

dAt = At

[
x̂tdt+ σAdB̃t

]
. (22)

Here H (I,K) is a quadratic adjustment cost function: H (I,K) = I + 1
2
h0

(
I
K
− i∗

)2
K.

It is straight forward to show that the value function and the policy function above satisfy

a homogeneity property:

V (A,K, x̂, ζ) =
1

1− γ
v

(
K

A
, x̂, ζ

)1−γ

A1−γ (23)

C (A,K, x̂, ζ) = c

(
K

A
, x̂, ζ

)
A, I (A,K, x̂, ζ) = i

(
K

A
, x̂, ζ

)
A, (24)

for some normalized value function v and policy functions c and i. In what follows, we will

write the normalized capital stock as k = K
A

, and the normalized value and policy functions

as v (k, x̂, ζ), c (k, x̂, ζ), and i (k, x̂, ζ). Also, define

q (k, x̂, ζ) = 1 + h0 [i (k, x̂, ζ)− i∗] (25)

be the Tobin’s Q implied by the optimal investment policy. Let t be an announcement time.

Note that upon announcements, x̂ jumps from x̂−t to xt, and ζ jumps from ζ−t to zero, as

announcements full reveal the true state. Because both Kt and At are continuous processes,

kt remains continuous at announcements.
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5.2 Announcement premiums

We keep the preference parameters the same as before and choose standard technology

parameters from the literature of production economies with long-run risks. The implied

macroeconomic moments as well as asset pricing statistics are list in Table VII.

Our benchmark calibration generates an announcement premium of 8.4 bps on

announcement days with a financial leverage of 3. Consumption is allowed to respond

immediately to announcements in the production economy; therefore, the announcement

premium comes both from the response of consumption with respect to announcements and

the impact of announcement on continuation utility. The A-SDF in the production economy

can be written as

m∗t =
π+
t

π−t
=

(
c (kt, xt, 0)

c
(
kt, x̂

−
t , ζ

−
t

))− 1
ψ

 v (kt, xt, 0){
E−t
[
v (kt, xt, 0)1−γ]} 1

1−γ

 1
ψ
−γ

.

Therefore, the announcement premium for market equity is given by:

−Covt

(
m∗t ,

q (kt, xt, 0)

q
(
kt, x̂

−
t , ζ

−
t

)) ,
where upon announcement, Tobin’s Q jumps from q

(
kt, x̂

−
t , ζ

−
t

)
to q (kt, xt, 0).

We show in the Appendix D that via a log-linear approximation, the announcement

premium can be written as:

1

ψ

[
∂ ln c (kt, xt, 0)

∂ lnxt

] [
∂ ln q (kt, xt, 0)

∂ lnxt

]
ζ−t +

(
γ − 1

ψ

)[
∂ ln v (kt, xt, 0)

∂ lnxt

] [
∂ ln q (kt, xt, 0)

∂ lnxt

]
ζ−t .

(26)

The first term reflects the impact of endogenous response of consumption on announcement

premium, and the second term reflect the effect of generalized risk sensitivty on announcement

premium.

In Figure 5, we plot the impulse response functions (IRF) for consumption (top panel),

continuation utility (second panel), SDF (third panel), and Tobin’s Q with respect to a one-

standard deviation of innovations in announcements with respect to xt, where the horizontal

axis is the number of years after announcement, and the vertical axis is log deviations from

steady state. We make several observations here. First, upon a positive news about future,

consumption responds negatively and the first term in (26) is negative. An IES of ψ = 2 in our
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calibration implies that the substitution effect dominates the income effect and consumption

drops upon postive news about productivity in the future. Due to the resource constraint,

a drop in consumption must be associated with an increase in investment as output does

not respond instantaneously to news. Note that Tobin’s Q is an increasing function of

investment as shown in equation (25). As a result, consumption and Tobin’s Q move in

oppositive directions upon a positive news about future, and the endogenous response of

consumption contribute negatively to the announcement premium.

Figure 5. Impulse Response Functions
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Figure 5 plots the impulse response functions of consumption, continuation utility, SDF and Tobin’s Q with

respect to one standard deviation in innovation of announcement in the production economy with γ = 20

and ψ = 2.

Second, both Tobin’s Q and continuation utility respond positively to news, generating a
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positive announcement premium. A positive news about future is always associated with an

increase in continuation utility. Due to a stong generalized risk sensitivity, the innvoations in

SDF is mostly dominated by the changes in continuation utlity, i.e. the second term in (26).

As shown in Figure 5, continuation utility responds positvely to news and SDF responds

negatively to news. In addition, the magnitude of the response of continuation utility and

SDF with respect to the announcement is many times higher than that of consumption.

Consequently, the second term in equation (26), the part of the announcement premium that

comes from generalized risk sensitivity dominates and result in a significent equity premium

on announcement days.

The fact that endogenous response of consumption contributes negatively to

announcement premium does not depend on whether the income or the substitution effect

dominates. It is merely the implication of the resource constraint and the optimality condition

of investment (25). The resource constraint implies that consumption and investment must

move in opposite directions, and the convexity of the adjustment cost function implies that

Tobin’s Q is a monotone function of investment. As a result, the immediate response of

consumption and Tobin’s Q with respect to announcements must be in opposite directions.

Of course, over time, a positive news is often associated with increases in both consumption

and investment in the future, but this channel does not affect the announcement premium

unless the utility features generalized risk sensitivity.

To illustrate the negative announcement premium associated with immediate response

of consumption with respect to announcements, in Figure 6 and 7, we plot the impulse

response functions of consumption, continuation utility, SDF, and Tobin’s Q with respect to

announcements for an expected utility model with high IES: ψ = 1
γ

= 2, and those for an

expected utility model with low IES, ψ = 1
γ

= 0.2, respectively. In the case with high IES,

substitution effect dominates, consumption responds negatively, and investment responds

positively to announcements. Under expected utility, SDF depends only on consumption,

and as a result, the negative comovement of consumption and Tobin’s Q produces a negative

announcement premium.
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Figure 6. Impulse Response Functions
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Figure 6 plots the impulse response functions of consumption, continuation utility, SDF and Tobin’s Q with

respect to one standard deviation in innovation of announcement in the production economy with ψ = 1
γ = 2.

In the case of low IES (ψ = 0.2), the income effect dominates, consumption rises after

the announcement and investment and Tobin’s Q drop. Again, the negative comovement

between consumption and Tobin’s produces a negative announcement premium. Note also,

in both expected utility models, because consumption changes in the only reason for SDF to

respond to announcements, the innovations of SDF is orders of magnitude smaller than that

in the model with recursive utility. Consequently, the announcement premium that comes

from the endogenous response of consumption is not only negative in sign, but also negligible

in magnitude.
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Figure 7. Impulse Response Functions

0 5 10 15 20 25

Years

0

2

4

△
c

×10-3 Consumption

0 5 10 15 20 25

Years

0

0.005

0.01

△
v

Continuation Utility

0 5 10 15 20 25

Years

-0.02

-0.01

0

△
S
D
F

SDF

0 5 10 15 20 25

Years

-0.01

-0.005

0

△
q

Tobin Q

Figure 7 plots the impulse response functions of consumption, continuation utility, SDF and Tobin’s Q

with respect to one standard deviation in innovation of announcement in the production economy with

ψ = 1
γ = 0.2.

6 Conclusion

Motivated by the fact that a large fraction of the market equity premium is realized on a

small number of trading days with significant macroeconomic announcements, in this paper,

we provide a theory and a quantitative analysis of the equity premium for macroeconomic

announcements. We show that generalized risk sensitivity in preferences provides a necessary
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and sufficient condition for the existence of announcement premiums in endowment economies

where consumption does not respond instantaneously to announcements. We present a

quantitative model that matches several stylized facts on the announcement premium,

including the announcement premiums for equity and bond, and that of the cross-section

of β−sorted portfolios. We also show that the economic mechanism that we demonstrate in

this paper is robust to extension to production economies, where consumption is allowed to

respond instantaneous to announcements.
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APPENDICS

The following appendices provide details of the data construction for the stylized facts in

Section 2, the proofs of the main results in Section 3 and details of the quantative models in

Section 4 and 5 of the paper. Appendix A is the data appendix. Appendix B contains the

proofs of Theorem 1. Appendix C provides the proof of Theorem 2 and numeircal solutions

of the endowment economy. Appendix D

Appendix A Data Description

Macroeconomic announcements We focus on the top five macroeconomic news

ranked by investor attention among all macroeconomic announcements at the monthly

or lower frequencies. They are unemployment/non-farm payroll (EMPL/NFP) and the

producer price index (PPI) published by the U.S. Bureau of Labor Statistics (BLS), the

FOMC statements, gross domestic product (GDP) reported by the U.S. Bureau of Economic

Analysis, and the Institute for Supply Management’s Manufacturing Report (ISM) released

by Bloomberg.8

The EMPL/NFL and the PPI are both published monthly and their announcement dates

come from the BLS website. The BLS began announcing its scheduled release dates in

advance in 1961, which is also the starting date for our EMPL/NFL announcements sample.

The PPI data series starts in 1971.9 There are a total of eight FOMC meetings each calendar

year, and the dates of FOMC meetings are taken from the Federal Reserve’s web site. The

FOMC statements began in 1994, when the Committee started announcing its decision to

the markets by releasing a statement at the end of each meeting. For meetings lasting two

calendar days, we consider the second day (the day the statement is released) as the event

date. GDP is released quarterly beginning from 1997, which is the first year that full data

are available, and the dates come from the BEA’s website.10 Finally, ISM is a monthly

8Both unemployment and non-farm payroll information are released as part of the Employment Situation
Report published by the BLS. We treat them as one announcement.

9While the CPI data are also available from the BLS back to 1961, once the PPI starts being published
it typically precedes the CPI announcement. Given the large overlap in information between the two macro
releases, much of the news content in the CPI announcement is already known to the market at the time of
its release. For this reason, we opt in favor of using the PPI.

10GDP growth announcements are made monthly according to the following pattern: in April the advance
estimate for Q1 GDP growth is released, followed by a preliminary estimate of the same Q1 GDP growth in
May and a final estimate given in the June announcement. Arguably, most uncertainty about Q1 growth is
resolved once the advance estimate is published, and most learning by the markets will occur prior to this
release. For this reason, we focus only on the four advance estimate release dates every year.
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announcement with dates coming from Bloomberg starting from 1997. Our sample ends in

2014.

High-frequency returns In Table III, we report the average stock market excess

returns over one-hour intervals before and after news announcements in event time. Here,

we use high-frequency data for the S&P 500 SPDR that runs from 1997 to 2013 and comes

from the TAQ database. For each second, the median price of all transactions occurring in

that second is computed. Prices at lower frequency intervals (e.g. hourly prices) are then

constructed as the price for the last (most recent) second in that interval when transactions

were observed. The exact times at which the announcements are released are reported by

Bloomberg.

Appendix B Proof of Theorem 1

Here we provide a proof for Theorem 1 of the paper in a two-period model by assuming i) a

finite state space, ii) fully revealing announcements, and iii) equal probability of each state.

The proof in the paper shows that the conclusion of the theorem holds in a fully dynamic

model without assuming fully revealing announcements. In addition, the assumption of a

finite space with equal probability can be replaced by a continuum. Because the proof of

Theorem 2 under the assumption of finite state space is relatively simple and does not require

functional analysis in infinite dimensional spaces, we present such a proof in this note.

Under Assumptions i)-iii), the intertemporal preference can be written as u (C0) +

βI [u (C1)] , where the certainty equivalence functional I maps random variables into the

real line. Because the probability space is finite, we can identify every random variable with

a N−dimensional vector. We denote V = [V1, V2, · · · , VN ], where Vs = u (C1,s) is the date-1

utility of the agent. We assume that the range of u (C), denoted Ψ, is a closed interval on

the real line. The set of all Ψ-valued random variables can be denoted as ΨN . As in the

paper, we make the following assumptions on I:

Assumption 1: I is continuously differentiable with strictly positive partial derivatives.

Assumption 2: I [k] = k whenever k is a constant.
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As we show in equation (12) and (13) on page 9 of the paper,

P− = E
[
m∗ (s)P+ (s)

]
, (27)

where the A-SDF, m∗ (s) is given by:

m∗ (s) =
1

π (s)

∂
∂Vs
I [V ]∑N

n=1
∂
∂Vn
I [V ]

. (28)

In the above equation, ∂
∂Vs
I [V ] denotes the partial derivative of I [V ] with respect to its sth

element. Equation (27) implies that the announcement premium is positive (negative) if

E
[
m∗ (s)P+ (s)

]
≤ (≥)E

[
P+ (s)

]
.

We first show that Condition 1 in the paper is equivalent to the ”negative comonotonicity”

of the partial derivatives of I [V ]:

Lemma 1. The following two conditions are equivalent:

1. The announcement premium is non-negative for all payoffs that are comonotone with

V .11

2. For any V ∈ ΨN , (
∂

∂Vs
I [V ]− ∂

∂Vs′
I [V ]

)
(Vs − Vs′) ≤ 0. (29)

Proof. First, we assume that 1) is true and prove 2) by contradiction. Suppose there exist

V and s, s′ such that Vs > Vs′ and ∂
∂Vs
I [V ] > ∂

∂Vs′
I [V ]. Consider the following payoff:

X (n) = Vn for n = s, s′; X (n) = 0 otherwise.

Clearly, X is comonotone with V , and therefore positively correlated with m∗ (s) defined in

(28). Therefore,

P− = E [m∗ (s)X (s)] > E [m∗ (s)]E [X (s)] = E [X (s)] ,

contradicting a non-negative announcement premium.

11Recall that a payoff X is comonotone with V if ∀s and s′ such that X (s) · X (s′) 6= 0,
[X (s)−X (s′)] [V (s)− V (s′)] ≥ 0.
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Next, we assume that 2) is true and prove 1). Take any X that is comonotone with V ,

then

P− = E [m∗ (s)X (s)] ≤ E [m∗ (s)]E [X (s)] = E [X (s)]

because m∗ (s) and X (s) are negatively correlated.

Lemma 1 establishes the equivalence between non-negative announcement premium (for

payoffs that are comonotone with continuation utility) and inequality (29). Inequality (29) is

known to be a characterization of Schur concave functions, which is equivalent to monotone

with respect to second order stochastic dominance for functions defined on finite probability

spaces with equal probabilities. We summarize the equivalence results in the following lemma

and refer the readers to Marshal and Okin or Muller and Stoyan for reference of such results.

Lemma 2. For any I that satisfies Assumption 1, the following two statements are

equivalent:

1. I [V ] is non-decreasing in second order stochastic dominance if and only if for any

V ∈ ΨN ,
(

∂
∂Vs
I [V ]− ∂

∂Vs′
I [V ]

)
(Vs − Vs′) ≤ 0.

2. I [V ] is strictly increasing in second order stochastic dominance if and only if any

V ∈ ΨN ,
(

∂
∂Vs
I [V ]− ∂

∂Vs′
I [V ]

)
(Vs − Vs′) ≤ 0, and strict inequality holds whenever

Vs 6= Vs′.

3. I [V ] is non-increasing in second order stochastic dominance if and only if any V ∈ ΨN ,(
∂
∂Vs
I [V ]− ∂

∂Vs′
I [V ]

)
(Vs − Vs′) ≥ 0.

With the above we are ready to prove Theorem 1 in the paper. The first part of Theorem

1 is

1. The announcement premium is zero for all assets if and only if I is expected utility.

Proof. If I is the expectation operator, that is, I [V ] =
∑N

s=1 π (s)V (s), then by (28),

m∗ (s) = 1, and the announcement premium must be zero for all assets. Conversely,

if the announcement premium is zero for all assets, we must have m∗ (s) = m∗ (s′)

for all s, s′, otherwise we can construct an asset with nonzero payoff in state

s and s′ that requires a non-trivial announcement premium. This implies that(
∂
∂Vs
I [V ]− ∂

∂Vs′
I [V ]

)
(Vs − Vs′) = 0 for all s,s′. For any V ∈ ΨN , note that

E [V ] ≥SSD V , by the above lemma, we must have

I [V ] = I [E [V ]] = E [V ] ,
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where the last equality uses Assumption 2.

The second part of Theorem 1 is a direct consequence of Lemma 1 and Lemma 2:

2. The announcement premium is non-negative for all assets with payoffs comonotone with

V if and only I is non-decreasing with respect to second order stochastic dominance.

From the above discussion, it is clear that a stronger version of the above result is also

true, that is,

3. The announcement premium is strictly positive for all assets with payoffs strongly

comonotone with V if and only I is strictly increasing with respect to second order

stochastic dominance.

Appendix C Details of the Continuous-time model

In this section, we provide details of the solution of the continuous-time model. We provide

the solution to the model with periodic announcement in Section 4.2 and 4.3 of the main

text of the paper.

Value function of the representative agent Because announcements fully reveal

the value of xt at nT , ζ+
nT = 0. We start from ζ0 = 0. In the interior of (0, T ), the standard

optimal filtering implies that the posterior mean and variance of xt are given by equations

(12) and (13). Here ζt has a closed form solution:

ζ (t) =
σ2
x

(
1− e−2ât

)
(â− ax) e−2ât + ax + â

, (30)

where â =
√
a2
x + (σx/σ)2. In general, we can write ζt = ζ (tmodT ) for all t.12

Using the results from Duffie and Epstein (1992), the representative consumer’s preference

is specified by a pair of aggregators (f,A) such that the utility of the representative agent,

Vt is the solution to the following stochastic differential equation:

dVt = [−f(Ct, Vt)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt,

12We use the notation tmodT for the remainder of t divided by T .
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for some square-integrable process σV (t). We adopt the convenient normalization A(V ) =

0 (Duffie and Epstein (1992)), and denote f̄ the normalized aggregator, and V̄t the

corresponding utility process. Under this normalization,

f̄(C, V ) =
β

1− 1/ψ

C1−1/ψ − ((1− γ)V )
1−1/ψ
1−γ

((1− γ)V )
1−1/ψ
1−γ −1

..

Due to homogeneity, the value function is of the form

V̄ (x̂t, t, Ct) =
1

1− γ
H (x̂t, t)C

1−γ
t , (31)

where H (x̂, t) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

β

1− 1
ψ

H (x̂t, t)
1−

1− 1
ψ

1−γ +

(
x̂t −

1

2
γσ2 − β

1− 1
ψ

)
H (x̂t, t) +

1

1− γ
Ht (x̂t, t)

+

[
1

1− γ
ax (x̄− x̂t) + ζt

]
Hx (x̂t, t) +

1

2

1

1− γ
Hxx (x̂t, t)

ζ2
t

σ2
= 0, (32)

with the boundary condition that for all n = 1, 2 · · ·

H
(
x̂−nT , nT

)
= E

[
H
(
x̂+
nT , nT

)∣∣ x̂−nT , ζ−nT ] . (33)

We solve H (x̂, t) by applying the finite difference method to the HJB equation (32), subject

to the boundary condition (49).

Asset prices For n = 1, 2, · · · , in the interior of (nT, (n+ 1)T ), the law of motion of

the state price density, πt satisfies the stochastic differential equation of the form:

dπt = πt

[
−r (x̂, t) dt− σπ (x̂, t) dB̃C,t

]
,

where

r (x̂, t) = β+
1

ψ
x̂−1

2
γ

(
1 +

1

ψ

)
σ2−

γ − 1
ψ

1− γ
Hx (x̂t, t)

H (x̂t, t)
ζ (t)+

1

2

1
ψ
− γ

1− γ
1− 1

ψ

1− γ

(
Hx (x̂t, t)

H (x̂t, t)

)2(
ζ (t)

σ

)2

is the risk-free interest rate, and

σπ (x̂, t) = γσ −
1
ψ
− γ

1− γ
Hx (x̂t, t)

H (x̂t, t)

ζ (t)

σ
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is the market price of the Brownian motion risk.

We denote p (x̂t, t) as the price-to-dividend ratio. For t ∈ (nT, (n+ 1)T ), the price of the

claim to the dividend process can then be calculated as:

p (x̂t, t)Dt = Et

[∫ (n+1)T

t

πs
πt
Dsds+

π(n+1)T

πt
p
(
x̂−(n+1)T , (n+ 1)T−

)
D(n+1)T

]
.

The above present value relationship implies that

πtDt + lim
∆→0

1

∆
{Et [πt+∆p (x̂t+∆, t+ ∆)Dt+∆]− πtp (x̂t, t)Dt} = 0. (34)

Equation (34) can be used to show that the price-to-dividend ratio function must satisfy the

following PDE:

1− p (x̂, t)$ (x̂, t) + pt (x̂, t)− px (x̂, t) ν (x̂, t) +
1

2
pxx (x̂, t)

ζ2 (t)

σ2
= 0, (35)

where the functions $ (x̂, t) and ν (x̂, t) are defined by:

$ (x̂, t) = r (x̂, t)− µ− φ (x̂− x̄) + φσσπ (x̂, t)

ν (x̂, t) = ax (x̂− x̄) +
ζ (t)σπ (x̂, t)

σ
− φσπ (x̂, t)

Also, equation (34) can be used to derive the following boundary condition for p (x̂, t):

p
(
x̂−T , T

−) = E

 H
(
x̂+
T , T

+
) 1
ψ
−γ

1−γ

E
[
H
(
x̂+
T , T

+
)∣∣ x̂−T , ζ−T ] 1

ψ
−γ

1−γ

p
(
x̂+
T , T

+
)∣∣∣∣∣∣∣ x̂−T , ζ−T

 . (36)

Again, we focus on the steady-state and denote p (x̂, 0) = p (x̂, nT+), and p (x̂, T ) =

p (x̂, nT−). Under this condition PDE (35) together with the boundary condition can be

used to determined the price-to-dividend ratio function.

We define µR,t to the instantaneous risk premium, that is,

µR,tdt =
1

p (x̂t, t)Dt

{Dtdt+ Et d [p (x̂t, t)Dt]} . (37)

In the interior of (nT, (n+ 1)T ), the instantaneous risk premium, µR,t − r (x̂, t) can be
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computed as [
µR,t − r (x̂, t)

]
dt = −Covt

[
d [p (x̂t, t)Dt]

p (x̂t, t)Dt

,
dπt
πt

]
.

We have:

µR,t − r (x̂, t) =

[
γσ −

1
ψ
− γ

1− γ
Hx (x̂t, t)

H (x̂t, t)

ζ (t)

σ

] [
φσ +

px (x̂, t)

p (x̂, t)

ζ (t)

σ

]
. (38)

Log-linear Approximation To gain a better understanding on how the risk premium

and the announcement premium depend on the parameters, we approximate the function

H (x̂, t) and p (x̂, t).

Note that the term βH (x̂t, t)
−

1− 1
ψ

1−γ is the consumption-wealth ratio. Consider the following

log-linear expansion: elnx ≈ eln x̄ + eln x̄ (lnx− ln x̄),

βH (x̂t, t)
−

1− 1
ψ

1−γ ≈ κ+ κ

[
ln β −

1− 1
ψ

1− γ
lnH (x̂t, t)− lnκ

]

where κ = βH (x̄, t)−
1− 1

ψ
1−γ is the consumption-wealth ratio at steady state.

Therefore, we can approximate βH (x̂t, t)
−

1− 1
ψ

1−γ as

β

1− 1
ψ

[
H (x̂t, t)

1−
1− 1

ψ
1−γ − 1

]
≈ 1

1− 1
ψ

[
κ+ κ

[
ln β −

1− 1
ψ

1− γ
lnH (x̂t, t)− lnκ

]
− β

]
= − κ

1− γ
lnH (x̂t, t) + ξ0

where we denote ξ0

4
= 1

1− 1
ψ

[κ− β − κ (lnκ− ln β)].

The HJB equation (32) is written as

ξ0 −
κ

1− γ
lnH (x̂t, t) +

(
x̂t −

1

2
γσ2

)
+

1

1− γ
Ht (x̂t, t)

H (x̂t, t)

+

[
1

1− γ
ax (x̄− x̂t) + ζt

]
Hx (x̂t, t)

H (x̂t, t)
+

1

2

1

1− γ
Hxx (x̂t, t)

H (x̂t, t)

ζ2
t

σ2
= 0, (39)
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The solution to the partial differential equation (PDE) (39) is given by:

H (x̂, t) = e
1−γ
ax+κ

x̂+h(t),

where h (t) satisfy the following ODE:

−κh (t) + h′ (t) + f (t) = 0, (40)

where f (t) is defined as:

f (t) =
(1− γ)2

ax + κ
ζ (t) +

1

2

(1− γ)2

(ax + κ)2

1

σ2
ζ2 (t)− 1

2
γ (1− γ)σ2 + axx̄

1− γ
ax + κ

+ ξ0.

The general solution to (40) is of the following form on (0, T ):

h (t) = h (0) eκt − eκt
∫ t

0

e−κsf (s) ds.

We focus on the steady state in which h (t) = h (tmodT ) and use the convention h (0) =

h (0+) and h (T ) = h (T−).

To log-linear approximate p (x̂, t), let % (x̂, t) = ln p (x̂, t), then equation (35) can be

written as:

e−%(x̂,t) −$ (x̂, t) + %t (x̂, t)− %x (x̂, t) ν (x̂, t) +
1

2

[
%xx (x̂, t) + %2

x (x̂, t)
] ζ2 (t)

σ2
= 0. (41)

Note that x̂t is itself an Ornstein-Uhlenbeck process with steady state x̄. Using a log-

linear approximation around x̂ = x̄, we can replace the term e−%(x̂,t) with e−%(x̂,t) ≈
e−%̄ − e−%̄ [% (x̂, t)− %̄], where we denote %̄ ≡ % (x̄, t), and write

e−%̄ [1 + %̄− % (x̂, t)]−$ (x̂, t) +%t (x̂, t)−%x (x̂, t) ν (x̂, t) +
1

2

[
%xx (x̂, t) + %2

x (x̂, t)
] ζ2 (t)

σ2
= 0.

(42)

We conjecture that % (x̂, t) = Ax̂ + B (t), and equation (42) can be used to solve for A and

B (t) by the method of undetermined coefficients to get A =
φ− 1

ψ

ax+e−%̄
.

Using the log-linearization result to evaluate equation (38) at x̂ = x̄, we obtain (19). In

addition, using p
(
x̂+
T , T

+
)
≈ eAx̂

+
T+B(T+), we can compute the expectation in (36) explicitly

and obtain (20).
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Numerical Solutions To solve the PDE (35) with the boundary condition (36), we

consider the following auxiliary problem:

p (xt, t) = E

[∫ T

t

e−
∫ s
t $(xu,u)duds+ e−

∫ T
t $(xu,u)dup (xT , T )

]
, (43)

where the state variable xt follows the law of motion;

dxt = −ν (x̂, t) dt+
ζ (t)

σ
dBt. (44)

Note that the solution to (43) and (36) satisfies the same PDE. Given an initial guess of the

pre-announcement price-to-dividend ratio, p− (xτ , τ), we can solve (43) by the Markov chain

approximation method (Kushner and Dupuis (2001)):

1. We first start with an initial guess of a pre-announcement price-to-dividend ratio

function, p (xT , T ).

2. We construct a locally consistent Markov chain approximation of the diffusion process

(44) as follows. We choose a small dx, let Q = |ν (x̂, t)| dx +
(
ζ(t)
σ

)2

, and define the

time increment ∆ = dx2

Q
be a function of dx. Define the following Markov chain on the

space of x:

Pr (x+ dx |x) =
1

Q

[
−ν (x̂, t)+ dx+

1

2

(
ζ (t)

σ

)2
]
,

Pr (x− dx |x) =
1

Q

[
−ν (x̂, t)− dx+

1

2

(
ζ (t)

σ

)2
]
.

One can verify that as dx → 0, the above Markov chain converges to the diffusion

process (44) (In the language of Kushner and Dupuis (2001), this is a Markov chain

that is locally consistent with the diffusion process (44)).

3. With the initial guess of p (xT , T ), for t = T −∆, T −2∆, etc, we use the Markov chain

approximation to compute the discounted problem in (43) recursively:

p (xt, t) = ∆ + e−$(x,t)∆E [p (xt+∆, t+ ∆)] ,

until we obtain p (x, 0).

4. Compute an updated pre-announcement price-to-dividend ratio function, p (xT , T )
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using (36):

p
(
x̂−T , T

−) = E

 H
(
x̂+
T , T

+
) 1
ψ
−γ

1−γ

E
[
H
(
x̂+
T , T

+
)∣∣ x̂−T , ζ−T ] 1

ψ
−γ

1−γ

p
(
x̂+
T , T

+
)∣∣∣∣∣∣∣ x̂−T , ζ−T

 .
Go back to step 1 and iterate until the function p (xT , T ) converges.

Appendix D Details of the Production Economy

Using the normalizations (24) and define

V (A,K, x̂, ζ) = H

(
K

A
, x̂, ζ

)
A1−γ (45)

, we can derive the following HJB equation:

0 = max
c,i

β

1− 1
ψ

c(k, x̂, t)1− 1
ψ [(1− γ)H(k, x̂, t)]1−

1− 1
ψ

1−γ

+H(k, x̂, t)

[
(1− γ) x̂+

1

2
σ2
Aγ (γ − 1)− β (1− γ)

1− 1
ψ

]
+Ht(k, x̂, t) +Hk(k, x̂, t)

[
(i− δk)− kx̂+ γσ2

Ak
]

+Hx(k, x̂, t)
(
κ
(
θ̄ − x̂t

)
+ (1− γ) ζ (t)

)
−kζ (t)Hkx(k, x̂, t) +

1

2
σ2
Ak

2Hkk(k, x̂, t) +
1

2

ζ2 (t)

σ2
A

Hxx(k, x̂, t) (46)

Since goods market clearing satisfies

c+ i+
h0

2

(
i

k
− i∗

)2

k = kα (47)

, the optimal investment policy function from (46) is equivalent to solve

0 = max
i

β

1− 1
ψ

[
kα − i− h0

2

(
i

k
− i∗

)2

k

]1− 1
ψ

[(1− γ)H(k, x̂, t)]1−
1− 1

ψ
1−γ +Hk(k, x̂, t) · i
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The FOC of i equals

β [(1− γ)H(k, x̂, t)]1−
1− 1

ψ
1−γ

[
kα − i− h0

2

(
i

k
− i∗

)2

k

]− 1
ψ (

1 + h0

(
i

k
− i∗

))
= Hk(k, x̂, t)

(48)

We solve H (k, x̂, t) by applying the finite difference method to the HJB equation (46),

subject to the boundary condition, for all n = 1, 2 · · ·

H
(
knT , x̂

−
nT , nT

)
= E

[
H
(
knT , x̂

+
nT , nT

)∣∣ x̂−nT , ζ−nT ] . (49)

.
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Table I

Market Return on Announcement and Non-announcement Days

# days p. a. daily prem. daily std. premium p.a.

Market 252 2.46 bps 98.2 bps 6.19%

Announcement 30 11.21 bps 113.8 bps 3.36%

No Announcement 222 1.27 bps 95.9 bps 2.82%

This table documents the mean and the standard deviation of the market excess return during the

1961-2014 period. The column “# days p.a.” is the average number of trading days per annum. The

second column shows daily market equity premium on all trading days, announcement days, and non-

announcement days respectively. The column “daily std.” is the standard deviation of daily returns.

The column “premium p.a.” is the cumulative market excess returns within a year, which is computed

by multiplying the daily premium by the number of event days and converting it into percentage

points.
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Table II

Intraday and Overnight Return with and without Announcement

Intrady Returns

# of Events Mean (StErr) Std

All Intraday 4278 −0.55 bps (1.67) 109

Announcement 336 17.0 bps (6.43) 118

FOMC 136 23.2 bps (10.0) 117

ISM 204 12.1 bps (8.26) 118

No Announcement 3942 −2.05 bps (1.72) 108

Overnight Returns

# of Events Mean (StErr) Std

All Overnight 4277 3.52 bps (1.06) 69.4

Announcement 544 9.32 bps (3.38) 78.8

NFP 204 16.2 bps (5.47) 78.1

PPI 204 −2.17 bps (5.86) 83.7

GDP 136 16.2 bps (6.02) 70.2

No Announcement 3733 2.67 bps (1.11) 67.9

This table decomposes intraday and overnight returns into announcement day

returns and non-announcement day returns. The first column is the total number

of events during the sample period of 1997-2014. The mean return on event

days is measured in basis points with standard error of the point estimate in

parenthesis.
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Table III

Average Hourly Return around Announcements

Announcement window −5 −4 −3 −2 −1 0 +1 +2

All Announcements 0.78 3.25 2.00 −0.17 −1.51 6.16 −2.32 2.11

(0.26) (2.34) (1.85) (0.02) (−1.64) (1.64) (−1.24) (0.90)

FOMC 13.35 13.54 7.65 3.37 4.78 0.19 5.84 −5.1

(2.43) (2.45) (3.08) (1.43) (2.92) (0.20) (0.82) (−1.08)

All w/o FOMC −0.37 0.42 0.94 −0.69 −2.96 6.88 −3.22 2.72

(−0.16) (0.72) (0.37) (−0.30) (−2.53) (1.26) (−1.43) (2.56)

This table reports the average hourly excess return around announcements during the 1997-2013 period, with

standard errors of the point estimates in parenthesis. The announcement time is normalized as hour zero. For

k = −5, −4, · · · , 0, +1, +2, announcement window k stands for the interval between hour k − 1 and hour k. The

row “All announcements” is the average hourly return on all announcement days; “FOMC” is the average hourly

return on FOMC announcement days, and “All w/o FOMC” is the average hourly return on all announcement days

except FOMC announcement days.
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Table IV

Calibrated Parameter Values

The benchmark model: endowment economy

β γ ψ x̄ ax σx σ ν φ σs
1
T

0.02 20 2 1.5% 0.02 0.11% 3% 4% 3 0 12

Inflation parameters

φP aθ σθ

0.20 0.02 0.01

The production economy

α δ x̄ ax σθ σA h0

1/3 10% 2% 0.10 0.26% 6% 5

This table presents the calibrated parameters of our models. The three panels

report the parameters used for the benchmark model (endowment economy),

inflation and the production economy, respectively.
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Table V

Market Return on Announcement and Non-announcement Days: Model
implications

Data Model

daily prem. daily std. daily prem. daily std.

Market 2.46 bps 98.2 bps 1.56 bps 71.71 bps

Announcement 11.21 bps 113.8 bps 10.67 bps 121.68 bps

No Announcement 1.27 bps 95.9 bps 1.25 bps 69.99 bps

This first two columns documents the mean and the standard deviation of the market

excess return during the 1961-2014 period. The first column is the daily market

equity premium on all days, that on announcement days, and that on days with no

announcement. The column “daily std.” is the standard deviation of daily returns. The

last two columns show our model’s corresponding model moments of equity premium

in the benchmark model.
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Table VI

Announcement-Day Treasury Bond Excess Returns: Data and Model
Implications

1y 2y 5y 7y 10y 20y 30y

Data (bps) 0.11 0.73 2.67 2.51 2.90 3.78 4.26

Model (bps) 0.27 0.52 1.20 1.61 2.15 3.45 4.24

This table presents average excess return of U.S. government

bond with different maturities on announcement days. We

normalize bond returns by the risk-free rate on announcement

days, as measured by the announcement-day return of 30- day

T bills. The second row shows our model impliations
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Table VII

Moments in the Production Economy

Moments Model

E
[
Ct+1

Ct

]
Average consumption growth 1.8%

Std
[
Ct+1

Ct

]
Std of consumption growth 3.18%

Std
[
It+1

It

]
Std of investment growth 5.94%

Std
[
Yt+1

Yt

]
Std of output growth 4.02%

E [Rf ] Average risk-free rate 1.85%

Std [Rf ] Std of risk-free rate 0.96%

E [R−Rf ] Market equity premium (per year) 4.77%

E [RA −Rf ] Announcement premium (per day) 8.4bps

E [RN −Rf ] Non Announcement premium (per day) 1.1bps

This table reports the moments in the production economy with recursive utility.
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